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Abstract

Scarce information and human capital may make it difficult to form accurate
expectations, limiting responses to uncertain environmental threats like air pollution.
We study two cross-randomized interventions in Lahore, Pakistan: 1) general training
in forecasting; 2) provision of air pollution forecasts. Both reduced subjects’ own
air pollution forecast errors; the training effect suggests that modest educational
interventions can durably improve forecasting skills. Forecast receipt increased
demand for protective masks and the responsiveness of outdoor time to pollution.
Forecast recipients were willing to pay 41 percent of their total mobile phone costs for
continued access, consistent with welfare gains from adaptation.
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1 Introduction

Contemporary people face risky and uncertain environmental threats, from climate change to
water and air pollution. In order to adapt effectively, they must form expectations [forward-
looking beliefs or forecasts; Bakkensen and Barrage, 2022]. For example, a farmer in India
must form an expectation over the arrival of increasingly erratic monsoon rains in order
to choose the planting date for rice. Forming accurate and precise expectations may be
difficult, however, particularly in an information-scarce developing-country context [Stiglitz,
2000].1 Underlying distributions may be changing over time [Kala, 2019]. Past outcomes
of random processes may not be readily observable, and correlated environmental threats
may be impossible to disentangle [Patel, 2023]. Third-party forecasts may be scarce or
of low quality [Rosenzweig and Udry, 2013, 2014]. Levels of relevant human capital may
be low [Jacoby and Skoufias, 1997, Beine et al., 2008], and ecumenical cognitive biases may
compound the problem of producing useful expectations [Tetlock, 2017]. The resulting errors
are plausibly consequential and create scope for beneficial interventions.

Air pollution provides a suitable domain to study expectations over environmental
threats, particularly in the developing world [Chang et al., 2019]. It varies at high fre-
quency, with large changes occurring from one day to the next. This allows a subject to
produce or consume multiple forecasts over the course of an experiment, and creates scope
for changes in a subject’s forecasting process. Uncertainty over air pollution matters, as
air pollution affects mortality and health [Knittel et al., 2016, Barrows et al., 2019, Barreca
et al., 2021, Garg et al., 2023], as well as labour productivity [Chang et al., 2016a, Neidell,
2017, Chang et al., 2019, Adhvaryu et al., 2022] and crime [Ayesh, 2023].2 Because of these
consequences, one can reasonably expect that subjects take air pollution forecasting seri-
ously. Air pollution has also become an ubiquitous part of life in developing cities [IQAir,
2023], making it a more natural forecasting domain than those sometimes employed in lab
studies (e.g. stock prices).

In this paper, we exploit uncertain air pollution to study how people form expectations
and make adaptation choices in the presence of limited information and human capital.
We concern ourselves with the following broad questions. Can developing-country residents
form useful forecasts, and can their forecasting ability be improved? How do changes in
forecast inputs influence adaptation, especially avoidance of environmental harm? Do people

1Stiglitz [2000] writes, “One of the central aspects of less developed countries is that markets work less
efficiently, including ‘markets for information.’ ”

2Other important work in this area includes: Alberini et al. [1997], Cropper et al. [1997], Jeuland et al.
[2015], He et al. [2019], Bishop et al. [2022], Gilraine and Zheng [2022], Persico [2022]. For reviews, see
Graff Zivin and Neidell [2018] and Aguilar-Gomez et al. [2022].
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exhibit positive demand for forecast products, consistent with welfare gains from changes in
adaptation? The answers to these questions shed light on forward-looking human decision
making. They are also important inputs to benefit-cost analyses of policies concerning air
pollution monitoring and abatement.

To address these research questions we implemented a randomized controlled trial, which
included two cross-randomized treatments: 1) in-person training designed to improve general
forecasting performance across all domains, e.g. by avoiding base-rate neglect;3 2) day-ahead
air pollution forecasts delivered by text message (SMS) for eight months. In theoretical
terms, we model these two treatments as shocks to inputs in an agent’s forecast production
function: training increases human capital, while text-message pollution forecasts increase
information.4 Broadly, three types of outcomes interest us: 1) expectations, e.g. error
in forecasting air pollution; 2) adaptive behavioural responses, e.g. willingness to pay for
particulate-filtering face masks; and 3) demand for inputs to expectations and adaptation,
e.g. willingness to pay (WTP) for our air pollution forecast product.

Our experiment involved 999 subjects in Lahore, Pakistan. In 2019, Lahore ranked as
the twelfth most polluted city in the world, with air quality roughly comparable to cities
like New Delhi, India; N’Djamena, Chad; and Baghdad, Iraq [IQAir, 2020, Riaz and Hamid,
2018, Zahra-Malik, 2017]. While Lahore experiences acute pollution, its residents face a
challenging information landscape in which to make useful forecasts. Some sources (public
and private) provide retrospective information, but such efforts remain incomplete in space
and time and information quality is uncertain.5 The Punjab Government’s Environmental
Protection Department (EPD) posts past measurements, but only online in English.6 The
US consulate in Lahore recently began providing hourly pollution averages online, but these
represent one point in a city with an area of more than 680 square miles. Retrospective and
real-time air pollution readings are not readily available to residents—especially the majority
who do not speak English—while air pollution forecasts are entirely absent.7 This kind of
information environment is common in developing cities.8

Average levels of human capital in Lahore may also hamper residents’ ability to forecast

3For example, a person who forecasts the probability of rain tomorrow without considering the long-term
mean probability of rain in her location exhibits base-rate neglect.

4In our theoretical model (Section 2), information and human capital may be complements or substitutes.
5Manipulation of air pollution readings has been documented in other developing-country settings

[Ghanem and Zhang, 2014, Ghanem et al., 2020].
6According to the Punjab Government: “Data on air quality in the province is scant. Sporadic monitoring

of air pollutants suggests that ambient air standards for particulate matter with size 2.5 micron (PM2.5) ...
are exceeded frequently” [Punjab Environmental Protection Department, 2017].

7In pilot surveys, respondents were asked to rank real-time alerts, retrospective readings, and forecasts
from most to least desirable. 69 percent ranked forecasts first, and 25 percent ranked them second.

8Section 5.7 provides evidence for this claim.
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accurately. Citywide, average educational attainment lies between 6.2 and 6.5 years [NIPS
and ICF, 2019]. In our subject population, it is 9.3 years. Pakistan’s nationwide educational
attainment (4.8 years) is a year lower than India’s, and roughly comparable to Uganda’s,
Ethiopia’s, and Nigeria’s [World Bank, 2017]. These countries’ urban residents may face skill
constraints similar to those of our subjects. Moreover, Lahore’s residents may confront the
same behavioural biases that generate forecasting errors even in highly educated populations
[Kahneman and Tversky, 1973].

Using incentive-compatible elicitations, we find that treatment with SMS forecasts and
training reduced error in incentivized one-day-ahead forecasts of fine particulates (PM2.5)
by 0.11 and 0.15 standard deviations respectively (6 and 8 µg/m3).9 This equals approxim-
ately 50 percent of the World Health Organization’s corresponding maximum safe 24-hour
standard.10 These improvements in mean forecast error are driven in part by reduced under-
estimation of air pollution levels. At endline, the median respondent underestimated PM2.5

levels by 40.2 µg/m3 in the control group, compared to 35.7 µg/m3 in the treatment groups.
Additionally, while both interventions reduced mean forecast error, training reduced the
variance of forecast error across subjects. Given that four to six months elapsed between the
training and the forecast elicitation, these forecast improvements are notable and consistent
with a durable increase in human capital.11 More generally, the effect of training suggests
that helping people use information is at least as important as delivering new information
[Hanna et al., 2014].

Forecast provision increased willingness to pay for particulate-filtering masks by 6.6
Pakistani Rupees (PKR), roughly five percent of the retail price.12 While the estimated
effect of training on mask demand is positive (4 PKR), it is imprecise. These results indicate
that a sparse information environment is one of the factors limiting the takeup of masks—
and more broadly pollution avoidance—in developing countries. This may be particularly
true when less informed people underestimate air pollution levels, as in our context. We
also estimate the effect of forecast receipt on outdoor time. This is an important margin of
adaptation to air pollution, as outdoor pollution exposure is frequently higher than indoor
[US Centers for Disease Control and Prevention, 2022]. Forecast receipt increased outdoor

9Forecasts were incentivized using payments for responses within 5, 10, or 20 percent of realised particulate
pollution. For more details, see Section 3.2.

10PM2.5 level denotes particulates with diameter 2.5 microns or less, measured in micrograms per cubic
meter (µg/m3). The World Health Organization has set the daily standard at 15 µg/m3 and the annual
standard at 5 µg/m3 [World Health Organization, 2021].

11The trainings occurred in August 2019, the endline survey in January-February 2020.
12N95 masks filter 95 percent of small particles. According to the mask manufacturer 3M, a genuine N95

mask retailed for 135 PKR (on average) in Lahore in November 2019, while our experiment was in progress.
Endline surveys were completed prior to the outbreak of Covid-19 in Pakistan.
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time by 16 percent on (infrequent) less polluted days and reduced outdoor time by 3 percent
on more polluted days. That is, SMS forecasts improved the alignment of outdoor time
with the level of air pollution. This pattern of responses was more pronounced for subjects
who reported caring about air quality at baseline, and for children. Increased avoidance by
children may have large welfare consequences because in-utero and childhood air pollution
exposures affect long-run health, labour force participation, and human capital [Currie et al.,
2014].

Subjects exposed to our one-day-ahead air pollution forecasts were willing to pay an
average of 93 PKR to continue receiving forecasts for 90 days.13 Viewed through the lens
of our model, this willingness to pay reflects the value of additional avoidance facilitated by
the forecasts. On a monthly basis, 93 PKR equals roughly 41 percent of households’ total
mobile phone costs. It stands in contrast to low willingness to pay for health-promoting
goods like insecticide-treated nets and chlorine [Kremer et al., 2011]. Drawing on third-
party demographic data, we show that our demand estimate implies substantial welfare
benefits from air pollution forecasting in developing countries, even allowing for uncertain
benefit transfer and substantial monitoring costs.

The timing of our training—roughly mid-way through the eight months of SMS
forecasts—allows for a better understanding of the dynamics of our treatment effects, as
well as of the interaction of the two interventions. Incentive-compatible forecast elicitations
were conducted at the beginning and end of the one-hour training. Subjects who had been
receiving our SMS forecasts for several months started the training session performing bet-
ter than those who had not, and this intent-to-treat effect on forecast error at the study
mid-point was similar to the effect at endline.14 Over the training session, those who had
not been receiving forecasts caught up in terms of forecast error, while those who had been
receiving forecasts saw no additional improvement. These results could be interpreted as
evidence of a ceiling on forecast accuracy, operating perhaps through memory or cognition.
In the context of our model, they could be interpreted as evidence that information and
human capital are substitutes in subjects’ forecast production functions.

Our study contributes to several literatures, of which the first is on environmental be-
liefs. In a US setting, Bakkensen and Barrage [2022] study expectations of future flood
risk. Previous work in developing countries has focused on farmers, including their beliefs
over soil salinity [Patel, 2023], monsoon onset [Giné et al., 2015], and drought risk [Zap-
pala, 2024]. Other studies have inferred precipitation beliefs from planting decisions [Kala,

13Willingness to pay for both forecasts and masks was elicited using a Becker-DeGroot-Marschak mech-
anism [Becker et al., 1964].

14The intent-to-treat effect of SMS forecasts on t+1 forecast error was -0.13 standard deviations at the
beginning of training, versus -0.11 standard deviations at endline.
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2019] or estimated responses to precipitation forecasts [Burlig et al., 2024, Patt et al., 2005,
Rosenzweig and Udry, 2013, 2014]. While we also study responses to forecasts, this paper
makes novel contributions on several dimensions. Perhaps most importantly, our experi-
ment shocks beliefs not only through subjects’ information sets (as prior studies have done),
but also through their human capital. We elicit beliefs directly using incentive-compatible
mechanisms, rather than relying on stated beliefs or inferring beliefs within a structural
model.

Second, we contribute to the body of work on training interventions in developing coun-
tries. Previous research has focused on business and entrepreneurship skills [Karlan and
Valdivia, 2011, McKenzie and Woodruff, 2014, Mart́ınez A et al., 2018], or job training
[Card et al., 2011, Acevedo et al., 2017]. Our paper instead considers training in general-
purpose forecasting skills. Researchers have sought to improve forecasting performance in
high-income settings, typically with highly educated subjects [Mellers et al., 2014, Morewedge
et al., 2015, Soll et al., 2015]. Our study adapts such techniques to a low-income setting.

The third relevant literature is on adaptation to environmental threats. A large body
of work naturally focuses on adaptation to climate change [Auffhammer, 2018]. Examples
include Burke and Emerick [2016], Mullins and Bharadwaj [2021], and Garg et al. [2020];
for a development-focused review, see Kala et al. [2023]. Within this literature, our paper
is most closely related to a set of studies on pollution avoidance behaviour [Graff Zivin
and Neidell, 2013].15 Many studies address avoidance behaviour in developed countries.
Prominent examples include Neidell [2004], Graff Zivin and Neidell [2009], and Moretti and
Neidell [2011].16 We provide evidence from a low-income developing country, where both
preferences and the scope for avoidance may differ (e.g. because of available technologies or
jobs). This literature has not explicitly addressed expectations, and as a result one cannot
tell whether studied populations are choosing avoidance consistent with the true state of
the world. Our experimental design allows us to observe both expectations and avoidance
behaviours for the same subjects.

Lastly our results fit within the literature on demand for environmental information.17

Our paper contributes by eliciting the value of air pollution information directly, using an
incentive-compatible mechanism. This recovers the entire demand curve, with an average
elasticity of -.93.18 In similar concurrent work, Patel [2023] experimentally estimates demand

15Air pollution avoidance behaviour may take the form of ex ante adaptation, e.g. purchasing a protective
mask, or ex post adaptation, e.g. rescheduling a planned outdoor activity at the last minute.

16Graff Zivin and Neidell [2013] provides a thorough review, including a brief theoretical foundation.
17A related literature studies health information in developing countries. For a review, see Dupas and

Miguel [2017].
18This estimate joins the large set roughly consistent with Samuelson [1965].
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for soil salinity information in Bangladesh. In prior work, Barwick et al. [2019] recover a
lower bound on the value of air pollution information in China.

The rest of the paper proceeds as follows. Section 2 presents our theoretical model
and Section 3 discusses experimental design. Section 4 describes our approach to empirical
analysis. Section 5 discusses estimated treatment effects and Section 6 concludes.

2 Theoretical model

In this section, we build a simple model of pollution avoidance by a forward-looking agent.
Consider an individual who at the end of the day (t = 0) is planning activities for the next
day (t = 1). Her payoff depends on the level of air pollution tomorrow and there are two
possible states of pollution s ∈ {h, l}, high and low. The agent consumes only at t = 1.
The effects of pollution can be mitigated by engaging in avoidance behaviour, which can
be purchased in both periods. Examples of avoidance in our setting include protective face
masks and cancellation or rescheduling of planned outdoor activities.19 Let x and y denote
the amount of avoidance purchased in periods 0 and 1 respectively. The agent’s payoff is

E − ds(x + y) − c(x, y),

where E > d(0) is her initial endowment, large enough to avoid any credit constraints. The
function ds is state-dependent damage,20 assumed to be decreasing and strictly convex in
the sum of avoidance purchased. The assumption that damage is decreasing in the sum
of avoidance implies avoidance actions are perfect substitutes across the two periods. This
matches our setting where, for example, cancelling plans a day ahead is a perfect substitute
for a cancelling them on the day.21 We further assume that both the magnitude of damage
and the marginal benefit of avoidance are increasing with the level of pollution, that is
dh(A) ≥ dl(A) ∀A and dh

1(A) ≤ dl
1(A) ∀A.22 The cost of avoidance is captured through

19One might object that masks are a durable good. We do not model them as such because 1) masks have
a limited life span, roughly 1 to 30 days in our Lahore setting, and 2) the cost of avoidance can be viewed
in terms of opportunity cost, i.e. use of a mask today prevents usage later.

20For simplicity, we assume that there is no credit constraint and that the agent is risk neutral. While
extension to risk aversion is possible, it reduces tractability without adding interesting results. We are
unable to study changes in risk aversion, as those involve comparing lotteries that are significantly different.
A specialized model making this point is presented in Appendix I.

21The damage function can be generalized to any weighted sum, e.g A = x + ϵy. Generalizing further is
possible, say to a damage function of the form d(x, y), if we either 1) make an interim assumption while
solving, similar to Rosenzweig and Udry, 2013, or 2) make assumptions on the third derivatives of the damage
function.

22A notation reminder is in order: we denote the partial derivative of a real valued function f (⃗a) with
respect to the i-th argument as fi.

7



the cost function c, which is assumed to be strictly convex and increasing in both x and
y. The marginal cost of avoidance increases if the agent waits. This may be thought of as
capturing increased search costs or higher price from a time-constrained search for a mask,
or the increased difficulty of rescheduling outdoor activities at the last minute.

Mathematically, this requires that globally c1 ≤ c2. We ensure this by assuming that
c(0, 0) = c1(0, 0) = c2(0, 0) = 0 and that for all x and y, c11 ≤ c12 ≤ c22. As costs are convex
in each period’s avoidance, making this assumption ensures that at any (x, y), buying more
x increases the marginal cost of x by less than the marginal cost of more y (c11 ≤ c21).
Similarly, buying more y raises marginal cost of y by more than that of x (c22 ≥ c12). This
is perhaps easier to see for the example where c(x + βy), with β > 1. Then the marginal
cost of y is always higher than that of x, and the above assumptions hold. Also note that
c(0, 0) = c1(0, 0) = c2(0, 0) = 0 is an elective normalization; the only requirement is that
c1(0, 0) ≤ c2(0, 0).

The level of pollution is unknown at time 0 but revealed at time 1. The probability
of high pollution is P (h) = π, which can also be interpreted as the agent’s unbiased prior
before she begins optimizing. While we assume that π is an exogenous constant, we note
that it can be a function of various other factors, such as the weather, and while we employ
a simple day-ahead model, the prior may itself vary day by day.

Then given π, in the process of optimizing the agent forms an internal forecast, F ∈
{H, L}, of tomorrow’s pollution. Her forecasting performance depends on her human capital
τ and her level of information ι at t = 0, both exogenous. Our treatments are designed to
vary (increase) the level of ι and τ , through either direct provision of our forecast or through a
learning exercise designed to improve forecast ability, respectively. We define the probability
of a correct forecast as the agent’s skill, P (H|h, ι, τ) = P (L|l, ι, τ) = ρ(ι, τ), and assume
she is equally good at predicting high and low pollution. We assume that skill is increasing
in both information and human capital, but make no assumption on their interaction (i.e.
whether they are substitutes or complements),23 though our empirical results suggest that
they are substitutes. Finally we assume that, given ι and τ , the forecast is weakly useful.
Formally this requires ρ(ι, τ) ≥ max{π, 1 − π}.

2.1 Hypotheses

The results of our model, provided in detail in Appendix A, yield a set of testable hypotheses.
First, our model shows that there is a positive willingness to pay for improvements in forecast

23In principle information and human capital could be substitutes or complements. Substitution might
arise, for example, if greater forecast skill leads subjects to pay less attention to information or remember it
with greater error. Complementarity might arise, for example, if greater forecast skill helps subjects weigh
information more appropriately when producing a forecast.
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ability (ρ). Given the assumption that our treatments (detailed in the next section) improve
an agent’s forecast ability, our model yields the hypothesis below.

Hypothesis 1. Willingness to pay for services that improve the agent’s forecast is non-zero.

Turning to avoidance behaviour, our model predicts that those who anticipate higher
levels of pollution tend to invest in higher levels of avoidance. Avoidance acts as insurance
against damage caused by pollution. Improved forecast information and skill allow our agent
to avoid pollution in a more sophisticated manner, undertaking more (costly) avoidance when
pollution is high, less when it is low. We can further establish that willingness to pay for
avoidance (e.g. masks) is increasing in forecast skill. We note that Lahore experienced high
air pollution throughout our study. Assuming that our interventions reduce forecast errors
and pre-intervention agents underestimated the level of pollution, we expect the following.24

Hypothesis 2. Subjects receiving our treatments should undertake more avoidance beha-
viour. In particular, we expect those in all treatment arms to have higher willingness to pay
for masks, compared to those in the control arm.

Similarly, our time-use data provide us with information on avoidance as a function of the
forecast sent a day ahead. Our model suggests that avoidance is increasing in the level of
the air pollution forecast. One of our treatments sent day-ahead forecasts of pollution to
respondents through mobile SMS. If agents incorporate this information and use it to form
better forecasts, we expect the following.

Hypothesis 3. Avoidance (e.g. reduced outdoor time) is expected to better match the state
(high or low pollution) among recipients of the SMS service. In particular, subjects receiving
SMS forecasts should avoid more than control subjects on high-pollution days and less on
low-pollution days.

Under the additional assumption that experience with our SMS forecast increases its per-
ceived skill, we expect the following.

Hypothesis 4. Willingness to pay for the forecast service will be greater for those who have
experience receiving the SMS service, compared to those without.

Finally we note that the interaction effects of the two treatments are ambiguous in sign,
largely because we impose no structure on the agent’s forecast function ρ(ι, τ). There is little
empirical basis for restricting ρ in our setting. Agents’ behaviour in combining information

24At end-line, control subjects underestimated the level of pollution compared to those in our treatments.
The median respondent underestimated PM2.5 levels by 40.2 µg/m3 in the control group compared to 35.7
µg/m3 in the treatment groups.
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and human capital to produce forecasts raises interesting research questions, but they are
mostly beyond the scope of this paper. While we don’t formalize this as a hypothesis, we
note that among participants who received the SMS service, we expect training will decrease
WTP for the SMS service if training and information are substitutes ( ∂2ρ

∂ι∂τ
≤ 0) and increase

it if they are complements.

3 Experimental design

We carried out our experiment with a representative sample of 1088 households from two
of the eight Tehsils (sub-districts) of Lahore: Walton and Model Town. We selected these
Tehsils partly for our ability to place a high-quality air pollution monitor in a locally central
location. This ensured the ground truth data for our forecasts was as accurate as possible.
The two Tehsils are middle-class, with education levels above the average for Lahore (27
percent of households have tertiary education compared to Lahore’s 18.5 percent average).
The external validity of results from this sample is discussed in Section 5.7. Further details
of sampling and randomization are discussed in Appendix F. Figure A1 shows the division
of our sample into treatment and control groups. We find no evidence of imbalance across
these groups at either baseline or end-line (Tables A1 through A4).

One adult per household was invited to participate in our study. Households were ran-
domly assigned to either have a male or a female respondent. We prioritized household heads
or spouses of households heads for selection, but if they could not be reached we randomly
selected another adult of the same gender from the household. All of our outcomes, including
our incentive-compatible forecast elicitations, our demand elicitations, and our outdoor time
use, were asked about this single respondent, except for child time use, which was asked
about the youngest physically active child in the household (i.e. that is able to walk). Both
of our treatments were also applied to the same respondent.

At baseline all subjects received a pamphlet explaining fine particulate air pollution
(PM2.5). A colour-coded table described potential health effects for different pollution ranges
in neutral language. The pamphlet also provided the mean and 5th and 95th percentiles of
the distribution of daily average fine particulate readings.25 Broadly the goal of the pamphlet
was to put all subjects—including the control group—in a position to make grossly reasonable
forecasts. In the forecasts-only and forecasts-plus-training groups, we delivered SMS air
pollution forecast messages to respondents every evening over a period of eight months. In
the training-only and forecasts-plus-training groups, we implemented the forecast training
once for every subject. More detailed descriptions of these interventions follow.

25The percentiles were described in colloquial language that assumed no knowledge of probability.
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3.1 Treatments

3.1.1 Day-ahead air pollution forecasts

We designed a model to forecast day-ahead (t+1) PM2.5 air pollution in our study neighbour-
hood. Our ensemble forecast combined the following inputs, using as the ground truth for
weighting our own air pollution monitor in the study neighbourhood, ensuring our forecasts
were local to our study respondents.26

1. A model based on data from our own air pollution monitors.27 PM2.5 levels for t +
1 were predicted using a seven-day moving-average (MA7) model with day-of-week
fixed effects and weather forecast controls. The MA7 form was selected using a cross-
validation exercise.

2. A similar MA7 model based on data from the US Consulate’s air pollution monitor.

3. MeteoBlue and SPRINTARS models. These are daily third-party forecasts of fine
particulate pollution based on satellite data. MeteoBlue is a private Swiss provider of
atmospheric data. SPRINTARS stands for Spectral Radiation-Transport Model for
Aerosol Species. This model was developed primarily by Kyushu University, Japan.

For additional detail on how these models were estimated and aggregated into an ensemble
forecast, see Appendix G. Appendix Figure A2 presents the accuracy of this ensemble fore-
cast relative to the ground truth during our study period. Importantly, our model was
substantially more accurate than respondent baseline forecasts, with an average absolute
error of 1.06 µg/m3 (standard deviation = 20.95) in the three months following baseline
versus 39.69 µg/m3 (standard deviation = 46.4) for respondents. We provided our forecast
treatment group (T1 and T3 ) respondents two pieces of information in each SMS message:
1) an average PM2.5 air pollution forecast for t+1; and 2) the realised average PM2.5 level for
the previous day (t − 1).28 The latter was intended to allow subjects to assess the accuracy
of our previous forecasts. SMS forecast messages were delivered to subjects around 8 PM,
e.g. a forecast of Tuesday’s particulate air pollution would have arrived on Monday evening.

3.1.2 Forecast Training

We implemented a one-hour training in forecasting skills based on the principles of Tetlock
[2017] and Kahneman [2011]. Broadly speaking, the training aimed to reduce behavioural

26For more detail, see Appendix Section F.4.
27All respondents were within a 2.5-mile radius of our primary monitor.
28Some governments make similar interventions. For example, the US EPA’s EnviroFlash service allows

users to receive one-day-ahead air pollution forecasts via text message.
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and psychological mistakes that decrease the accuracy of subjects’ forecasts. A group of
specially selected and trained enumerators conducted the trainings in Urdu in subjects’
homes, and subjects received 150 PKR for their participation.29

The first several exercises taught subjects to combine “outside” and “inside” views when
making a forecast [Kahneman and Lovallo, 1993, Lovallo et al., 2012]. The outside view is a
mean outcome or base rate from a reference class of similar uncertain events. In our setting,
long-run mean air pollution in Lahore would be a reasonable base rate. The inside view
incorporates information particular to the event being forecast, like the probability of rain
tomorrow. Subjects were taught how to choose a good reference class and warned of the
tendency to give too much weight to the inside view.

Next subjects learned to distinguish fast- and slow-changing systems prior to forecasting.
They were encouraged to explicitly assess the accuracy of a source before using its inform-
ation as a forecast input. The following exercise taught subjects an important heuristic for
forecasting time series: they were instructed to consider a history at least as long as the
time horizon of the forecast task. That is, to forecast three days ahead one should consider
at least three days of history.

Subjects then completed an exercise that encouraged them not to round their forecasts
excessively. In the final set of exercises, subjects were asked to reflect on an earlier forecasting
task and had the opportunity to change their previous forecasts. This taught subjects to
slow down and to engage “System Two” in the language of Kahneman [2011].

All exercises involved the active participation of subjects and were followed by clear feed-
back. The training was designed to be general: the large majority of the lessons and examples
did not involve air pollution. Sessions were relatively brief, with an average duration of 51
minutes.30

3.2 Primary outcomes

Endline surveys were conducted in person in subjects’ homes ten months after baseline, and
measured five primary outcomes.31

1. Air pollution forecast errors. We asked respondents to forecast average PM2.5

levels at t + 1 and t + 3 in their neighbourhood.32 We incentivized the forecasts by

29Urdu is one of the primary local languages spoken in Lahore. Training was in-person rather than online
to reduce barriers to participation and increase take-up.

30The standard deviation of training duration was 15 minutes.
31Baseline surveys were in April-May 2019. Endline surveys were in January-February 2020, prior to the

outbreak of Covid-19 in Pakistan.
32Absolute-value forecast errors were standardized by subtracting the mean and dividing by the control-

group standard deviation at each time horizon t + 1 and t + 3.
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offering payments for responses within 5, 10, and 20 percent of realised PM2.5 levels.
This outcome allows us to examine expectation formation—that is, do our treatments
improve respondents’ ability to forecast? Just before providing an air pollution forecast,
subjects were asked if they wanted to view a weather forecast (at no cost). Subjects
who answered yes were shown a weather forecast for the target date (t + 1 or t + 3)
on a tablet computer, and then proceeded to make their incentivized air pollution
forecast. Weather forecasts are potentially relevant because, for example, rain greatly
reduces particulate pollution. This secondary feature of the experiment was designed
to evaluate whether treatment would affect take-up and use of relevant information.

2. Willingness to pay for a particulate-filtering face mask. We elicited respond-
ents’ willingness to pay for a air pollution mask (N95) using a Becker-DeGroot-
Marschak (BDM) mechanism [Becker et al., 1964], with the price in PKR drawn from
a uniform distribution on the interval [0, 200].33 This outcome allows us to meas-
ure adaptive behavioural response—that is, do our treatments increase respondents’
valuation of an avoidance good?

3. Air pollution avoidance index. We asked respondents to report (yes or no) whether
in the past week they: (i) reduced the number of hours spent on non-work outdoor
activities; (ii) reduced the number of hours worked significantly; or (iii) rescheduled
activities across days in response to poor air quality. We indexed these responses into
a single measure. This outcome offers an additional dimension of adaptive behavioural
response—that is, do our treatments alter respondents’ time allocations in ways that
reduce air pollution exposure?

4. Happiness variance. On a five-point Likert scale, we asked respondents to report
“how variable has [their] level of happiness been from day to day over the past week.”
This measures whether our treatments help subjects to better smooth subjective well-
being across days.

5. Willingness to pay (WTP) for pollution forecasts. We elicited respondents’
willingness to pay for a 90-day subscription to our PM2.5 forecast SMS service. We
used a BDM mechanism, drawing the price in Pakistani Rupees (PKR) from a uniform

33We used BDM auctions to elicit WTP for our SMS forecast service and a particulate filtering mask
(N95). In each auction respondents received a monetary endowment equal to the maximum possible bid
(200 PKR). A respondent who won—i.e., their bid price was higher than the randomly drawn price in the
interval [0, 200]—received the forecasts (or mask), keeping the difference between their endowment and their
bid. A respondent who lost kept their entire endowment. Before bidding on the forecasts or mask, subjects
completed a practice BDM auction using real money and answered comprehension questions. Enumerators
explained any errors in answering the comprehension questions.
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distribution on the interval [0, 200]. This outcome allows us to measure demand for
inputs to expectations.

Four of these five primary outcomes were also measured at baseline, for use as variance-
reducing controls (see Section 4). WTP for pollution forecasts could not be elicited at
baseline, as this would have required delivery of forecasts to winners of the BDM auction
outside the group randomly assigned to receive forecasts.

4 Empirical strategy

This section explains our strategy for estimating causal effects of treatment. Meaningful
deviations from the pre-analysis plan are described in Appendix H.3.

4.1 Intent to treat

We estimate effects within subject for the following primary outcomes: air pollution forecast
errors, willingness to pay for a particulate-filtering mask, an index of air pollution avoidance,
and self-reported happiness variance. The estimating equation is as follows.

Yi = βF Forecastsi + βT Trainingi + βF T Forecastsi × Trainingi + γY0i + X
′

iδ + εi (1)

In this equation i indexes subject and Y is the outcome.34 Forecastsi denotes random as-
signment to SMS forecasts, and Trainingi random assignment to training. Y0 is the baseline
variable corresponding to the outcome Y . X is a vector of controls, including randomiza-
tion block dummies. As pre-specified, other elements of X were chosen using post-double-
selection LASSO applied separately to each primary outcome.35

Our pre-analysis plan anticipated power concerns under correction for multiple testing
across eight primary estimates (discussed in Section 4.3). With such concerns in view,
the plan pre-specified theoretically motivated one-tailed tests for some treatment-outcome
combinations. For air pollution forecast errors, theory predicts that more information and
better forecast training should both weakly improve forecast quality. The tests are one-
tailed, against the alternatives βF < 0, βT < 0. The substitutability or complementarity of
our two interventions is theoretically ambiguous, so the test of their interaction is two-tailed
(βF T ̸= 0) for this and all other outcomes. We expect both treatments to improve subjects’
ability to smooth utility over time, so tests in the model of self-reported happiness variance

34All treatment regressions include a constant term, but we omit it from most equations in this document
in the interest of clarity.

35See Appendix H.2 for more discussion.
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are one-tailed (βF < 0, βT < 0). Finally our model predicts that both treatments will
increase avoidance when pollution is high (Hypothesis 2), so tests for mask demand and the
avoidance index are against the following alternatives: βF > 0, βT > 0.

We estimate willingness to pay for 90 days of SMS forecasts between subjects.

Yi = α + βF Forecastsi + βT Trainingi + βF T Forecastsi × Trainingi + εi (2)

Notation for outcomes and treatments is as in Equation 1. For willingness to pay for forecasts,
our pre-specified hypothesis test takes the one-tailed form: α + βF > 0. That is, we test
whether mean willingness to pay is positive among subjects in the SMS-forecast-only group.36

This is the test that will be included in our multiple-testing correction procedure.37

4.2 Treatment on the treated

For the training arms (Trainingi = 1) we observe participation in the training session (PT i =
1). For the forecast arms (Forecastsi = 1) take-up means looking at our SMS forecast. This
was not directly observable. Moreover it plausibly varied, both across individuals and within
individual over time. As pre-specified, we construct a take-up measure using end-line survey
responses to the question: “How many times in the last week have you seen our pollution
forecast message?”38 Denote the response of subject i as Ri.39 Then a subject’s take-up is
defined as PF i = 1

7Ri. This variable will range from zero to one, and can be interpreted as
the fraction of forecasts taken up. While PF i is measured with error, in expectation this error
has zero covariance with our random treatment assignment. Importantly, we also allow for
take-up by those in our control group. In the end-line survey, we showed control respondents
a picture of a forecast treatment SMS message and asked “Did you receive any LUMS air
pollution text messages similar to these from someone else?”40 If the respondent said yes, we
followed up with “If yes, how frequently did this happen?” We estimate a frequency in the
last week by dividing the reported (total) frequency by the number of weeks of the forecast
intervention. Just 31 of 544 subjects (5.7 percent) outside the text message group reported
receiving any of our pollution forecasts. Of these 31 subjects, 22 reported receiving one to

36Note that because randomization block dummies are not included in Equation 2, treatment effects are
not identified and estimates of β should not be interpreted causally. The sum α + βF is of research and
policy interest even though it does not reflect causal effects of treatment.

37The hypotheses that willingness to pay among control subjects is positive α > 0, that training affects
willingness to pay βT ̸= 0, and that the treatments interact βF T ̸= 0, are interesting but secondary, as
specified in our pre-analysis plan.

38This question was asked only of subjects assigned to the forecast treatment.
39Subjects who responded “not sure” were assigned Ri = 0.
40LUMS is the Lahore University of Management Sciences.
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nine of our messages over the entire course of the study, and just nine reported receiving ten
or more (Table A.22).

The interaction of take-up measures is simply PF T i = PF iPT i. Effects of
treatment on the treated are estimated using two-stage least squares (2SLS), with
{Forecastsi , Trainingi , Forecastsi × Trainingi} instrumenting for {PF i, PT i, PF T i}. Estimat-
ing equations appear in Appendix H.1. One- and two-tailed hypothesis tests for primary
outcomes are analogous to those in our ITT regressions.

4.3 Multiple hypothesis testing

To address concerns of multiple hypothesis testing, we follow the procedures in Ander-
son [2008] and report Anderson sharpened q-values for our primary variables of interest.
Sharpened q-values account for multiple hypothesis testing by using False Discovery Rate
(FDR) adjustments as proposed by Benjamini et al. [2006]. While traditionally the process
requires the researcher to specify the threshold “q-value” (i.e. the proportion of false rejec-
tions of the null in expectation), sharpened q-values allow us, like other recent papers,41 to
side-step this issue. Sharpened q-values are found by varying the false discovery rate and for
each hypothesis reporting the smallest q-value for which the null is rejected. For example, a
sharpened q-value of 0.1 means that a hypothesis would only be rejected if the false discovery
rate is above 10%.

We adjust for potential false discoveries in the subset of alternative hypotheses related
to our primary outcomes: willingness to pay for forecast information (α + βF > 0), air
pollution forecast error at t+1 (βF < 0, βT < 0),42 self-reported happiness variance (βT < 0),
willingness to pay for masks (βF > 0, βT > 0), and the avoidance index (βF > 0, βT > 0).
The total count of included tests is eight. Note this is not an exhaustive list of hypotheses
involving treatment effects on our primary outcomes. As pre-specified, where a test is less
interesting we exclude it from the adjustment procedure.

41See for example Banerjee et al. [2015], Bryan et al. [2021] and Ahmad et al. [2024].
42Note that in the PAP we specified an index that combined forecast errors at t + 1 and t + 3 as a primary

outcome. Following the recommendation of referees, we instead use the more intuitive measure of forecast
errors at t + 1. Details of this change and the original results table are provided in Appendix H.3.
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5 Results

5.1 Primary outcomes, intent to treat

Four of our four primary hypotheses pertain to regression estimates of intent-to-treat ef-
fects, which are presented in Table 1.43 Column headings indicate dependent variables. As
described in Section 4, we pre-specified a one- or two-tailed test at the outcome-treatment
level. The resulting p-values appear in square brackets. For pre-specified primary hypo-
theses we also report Anderson sharpened q-values in curly brackets, to account for multiple
hypothesis testing as discussed in Section 4.3.

Column 1 presents estimates for t+1 forecasting error. This is our primary outcome in the
domain of expectation formation. Provision of SMS forecasts reduced forecast error by .11
standard deviations, while training reduced it by .15 standard deviations. Figure 1 illustrates
these error reductions in levels; a detailed discussion follows in Section 5.5.1.44 Subjects in
the SMS forecast group had not yet received the next day’s forecast message at the time they
made their own incentivized forecasts, so the reduced error is not a mechanical consequence
of treatment.45 Instead the negative treatment effect for this group is consistent with learning
about the data-generating process for air pollution over the course of the experiment. The
negative effect of training on forecast error is consistent with increased forecasting-relevant
human capital. We also present p-values for a test of equality of the SMS and training effects
in Table 1. We cannot reject that the two treatment effects on forecast error are the same,
nor can we do so for our remaining primary outcomes.

The interaction effect on t + 1 air pollution forecast error is positive (column 1 of Table
1), so the effect on the group that received both treatments was −.11 − .15 + .13 = −.13σ

(p-value of 0.014). The overall effect of receiving both treatments is consistent with net
substitutability of information and human capital in the production of forecasts. A similar
pattern obtains in all columns of Table 1, with estimated interaction effects taking the sign
opposite that of the forecast and training effects. Our data do not speak to the sources of this
substitutability. Potential explanations include crowd-out of training by recent, salient SMS

43Table A23 reports primary ITT results without controlling for baseline measures of the outcomes, and
without the controls selected by the post-double-selection LASSO.

44Note the confidence intervals associated with one-tailed hypothesis tests are also one-sided. In the case of
the effect of training on forecast error, as an example, the associated 95% confidence interval is (−∞, −0.063).
The upper bound is calculated as −0.15 + (1.645 ∗ 0.053). That is to say, with our study’s power, we can
confidently rule out all positive treatment effects and very small negative effects but we cannot rule out
much larger negative effects.

45That is, subjects were not in a position to simply parrot the prediction of our forecast model because
the relevant message arrived in the evening, after all endline surveys had been completed. Furthermore, we
find that only one percent of forecast-group subjects simply repeated the forecast for the previous day.
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forecasts and constraints on recall or cognition. As treatment interactions were not the focus
of our experimental design—none were included in our pre-specified primary outcomes—we
do not discuss them further.

Column 2 reports effects on t + 3 air pollution forecast error. Point estimates indicate
that both treatments reduced error much less at t + 3 than t + 1, though we cannot reject
a null hypothesis of equality. Intriguingly, the relative advantage of the training treatment
is greater at the longer time horizon. One day ahead, training reduces error by 31 percent
more than SMS forecasts do. Three days ahead, training reduces error by 99 percent more.46

Given the large standard errors, we do not make strong claims about this pattern. It could
reflect the fact that our SMS messages contained forecasts for t + 1 but not t + 3. Over
the period they received messages, subjects might have learned lessons about forecasting
one day ahead that proved unhelpful or even counterproductive when forecasting three days
ahead. In contrast, the training treatment was designed to be general-purpose and produced
practically meaningful reductions in error at both time horizons.

The reductions in t + 1 forecast error from forecast provision and training are practic-
ally large. Estimating effects in concentration rather than standard deviations (Table A7,
Column 1), the treatments reduced forecast error by 6.2 to 8.4 µg/m3, or 9.5 to 13 percent
of the control mean. The WHO 24-hour standard for PM2.5 is 15 µg/m3, so the marginal
effects of forecasts and training are roughly 50 percent of the maximum healthy level.47 The
.15σ reduction from forecast training is particularly remarkable, as our endline surveys took
place four to six months after the training sessions. This suggests that our relatively brief
sessions—average duration was 51 minutes—produced durable improvements in subjects’
forecasting ability.48 Table A7, Column 2, presents ITTs on mean squared forecast error,
which are larger as a proportion of the control mean than ITTs for absolute errors. This is
because treatment both improved the mean and lowered the variance of errors.

Comparisons to other studies in which experimenters designed treatments to reduce fore-
cast error require care, owing to differences in setting, time horizon, and forecast scor-
ing. Mellers et al. [2014] found that probability training improved mean standardized Brier
score—a measure of forecast skill—by roughly .1σ. The improvement persisted over two
years. Following the same annual training intervention over four years, Chang et al. [2016b]
found a 6 to 12 percent improvement in Brier scores, again roughly similar to our estimated
effects. While the participants belonged to many countries, they all had bachelor’s degrees,

46These percentage changes use midpoints as bases.
47Both the United States and the European Union employ more stringent standards. Average PM2.5 levels

during endline surveys were 147 µg/m3. As a proportion of this level, the 8.4 µg/m3 error reduction is 5.7
percent.

48The standard deviation of training duration was 15 minutes.
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and two thirds had graduate degrees. The probability training of Mellers et al. [2014] and
Chang et al. [2016b] contained substantially more material and more complex tasks than
ours. We find that a shorter, simpler training, conducted with less educated subjects, yiel-
ded a coarsely similar improvement in forecast performance for air pollution.

Column 3 of Table 1 presents effects on the variance of happiness, as reported by subjects
on a five-point Likert scale.49 Larger values correspond to higher variability. Estimated
effects are small and not statistically distinguishable from zero. These coefficients potentially
reflect both small or null treatment effects on this outcome and the measurement problems
that attend questions of this type [Bond and Lang, 2019]. Note that the sample size in
column 2 is 951, rather than 999 as in the other columns of Table 1. Here and throughout
the paper, sample sizes less than 999 reflect non-response.

Column 4 reports effects on willingness to pay for N95 particulate-filtering masks.50 The
SMS forecast intervention increased WTP by 6.58 PKR.51 The estimated effect of training is
also positive at 3.95 PKR, but less precise. These positive estimates are consistent with Hy-
pothesis 2 from the theoretical model in Section 2. That is, treated subjects may have higher
WTP for masks because their forecasts of high pollution are more likely to be accurate.52

More generally, better forecasts enable subjects to wear masks on the high-pollution days
when they are most needed and conserve masks on less-polluted days. Estimated coefficients
for the avoidance index are similarly positive (column 5), but are not statistically significant
for either treatment. The results for mask demand are consistent with the finding of Ito and
Zhang [2020] that willingness to pay for air purifiers increased in China after the US embassy
in Beijing began posting air pollution readings. Our findings are also qualitatively consistent
with studies of behaviours related to water pollution in developing countries. Madajewicz
et al. [2007] found a large increase in the probability of switching wells when they informed
households of arsenic contamination, while Jalan and Somanathan [2008] found that inform-
ing households of fecal water contamination led them to begin purifying their water.

49The question at endline was, “How variable has your level of happiness been from day to day over the
past week?” At baseline, we asked “How variable has your level of happiness been over the past month?”
While these questions are not identical, we use this baseline measure as a control to improve precision.

50Our endline survey concluded prior to the outbreak of the Covid-19 pandemic. At baseline, the maximum
bid was 150 PKR. Despite this difference in censoring, we employ baseline WTP as a control corresponding
to Y0i in Equation 1.

51As explained in Appendix H.3, our pre-analysis mistakenly specified a two-tailed test for this coefficient.
Table 1 reports a one-tailed p-value congruent with Hypothesis 2 of our theoretical model (Section 2).
The two-tailed p-value is .06. Table A8 reports an alternative set of sharpened q-values in which tests on
willingness to pay for masks and the avoidance index are two-tailed.

52We can rule out the possibility that the effect on mask demand stems from learning about mean pollution,
as both treatment and control subjects received this information at baseline. See Section 3 for more details.
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5.2 Outdoor time use and WTP for forecasts, intent to treat

In this section we evaluate additional hypotheses from our theoretical model (Section 2).
The first two are related to avoidance behaviour. Column one of Table 2 presents SMS
forecast effects on time spent outside on the day before the end-line survey, pooling over
adults and children. We elicited outdoor time use through time diaries, asking subjects to
describe their activities—and whether the activities occurred outdoors or indoors—for each
hour of the day.53 Such diaries are considered best practice in time-use research because they
minimize reporting biases, including recall bias and experimenter demand [Seymour et al.,
2017, Field et al., 2022, Giménez-Nadal and Molina, 2022].

We focus on the SMS treatment rather than training because our SMS forecasts varied
over the course of the end-line survey and training did not, but results are robust to es-
timating the full suite of treatment effects (Table A18). On relatively cleaner days, with
our forecast of particulate pollution below 150 micrograms per cubic meter, subjects receiv-
ing SMS messages increased outdoor time by .74 hours, or 16 percent of the control-group
mean. The 150-microgram value was chosen because it was the threshold for the most pol-
luted category of days in the pamphlet provided to all subjects (including control subjects; see
Section 3). Because the end-line surveys were conducted during a high-pollution time of year
(January-February), all of our SMS forecasts were in either the highest- or second-highest
pollution category. On relatively more polluted days, subjects receiving SMS forecasts spent
slightly less time outdoors than control subjects. That is, the sum of the “Forecasts” and
“Forecasts * High pollution” coefficients is negative (.74 − .88 = −.14) and three percent of
the control mean, but one cannot reject a hypothesized zero marginal effect. When presented
with a relatively good forecast during a bad season for air pollution, SMS-treated subjects
took advantage and control subjects did not. This is consistent with Hypothesis 3. When
presented with a relatively bad forecast, SMS-treated subjects avoided slightly more than
control subjects. Again this is consistent with Hypothesis 3, but we emphasize that the
estimate is imprecise.

Column two of Table 2 presents heterogeneous treatment effects by whether subjects care
about air quality.54 At baseline 85 percent of subjects reported caring. This dimension of
heterogeneity was not pre-specified and results should be interpreted cautiously. Having said

53Subjects completed 24-hour time diaries for both themselves and the youngest physically act-
ive child in their household. The estimating equation is Yi = βF Forecastsi + βHHigh pollutiont +
βF HForecastsiHigh pollutiont + γY0i + X

′

iδ + εi. High pollutiont is a dummy for a high air pollution forecast
(fine particulate concentration above 150 µg/m3) on the day of the subject’s end-line time diary (the day
before the end-line survey). As elsewhere in the paper, baseline controls in X were chosen using post-double-
selection LASSO.

54The estimating equation adds a triple interaction with an indicator for caring about air quality; this
indicator also enters in non-interacted and double-interacted control terms.
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that, the indicator for caring co-varies with other attributes in ways that suggest it is not
merely cheap talk. Covariances with baseline avoidance, end-line reports of viewing SMS
forecasts, and end-line demand for SMS forecasts are all positive and statistically significant;
the covariance with baseline demand for masks is positive but imprecisely estimated (Table
A19). For subjects who reported caring, the pattern of signs in column two of Table 2 is
similar to that of column one. On days with lower forecast pollution, SMS-treated subjects
who care about air pollution spent three additional quarters of an hour outside, relative to
the control group. On days with higher forecast pollution, they spent one quarter of an hour
less outside.55 Broadly the results in column two are consistent with Hypothesis 3.

Columns three through six of Table 2 repeat the specifications of the first two columns
separately for adults and children. Broadly the patterns of signs for adults and children are
similar to the pooled estimates.56 The smaller samples reduce precision, especially for chil-
dren, preventing us from making strong statements about relative magnitudes. Bearing that
caveat in mind, the point estimates are consistent with greater avoidance among forecast-
treated children (.60−1.08 = −.48 hours in column five) than adults (.60− .45 = −.15 hours
in column three). Similarly the marginal effects of SMS forecasts on high-pollution days in
households that care about air quality are consistent with more avoidance among children
than adults.57

Our experiment produced no direct evidence on whether the changes in outdoor time seen
in Table 2 reduced pollution exposure.58 We cannot exclude the possibility that subjects
were making mistakes, particularly if pollution was high inside their home or workplace.
But staying indoors can be an effective air pollution avoidance strategy. Levels of some
pollutants, e.g. ozone, are generally much lower indoors [US Centers for Disease Control and
Prevention, 2022] and indoor activities often involve less physical exertion [Laumbach, 2010].
Our time-use findings are consistent with Barwick et al. [2019], which finds that credit-card
transactions outside the home decline with higher air pollution after the rollout of real-time
pollution information in China.

55Among subjects who care about air pollution, the marginal effect of SMS forecast treatment is .10+.64 =
.74 hours on cleaner days and .10 + .64 + 1.22 − 2.21 = −.25 hours on dirtier days. The latter marginal effect
is not statistically significant at any conventional threshold.

56Note that the pooled coefficient on “Forecasts” in column one is not a convex combination of the
corresponding adult- and child-specific coefficients because of our pre-specified LASSO procedure for control
selection. Appendix Table A20 shows that without LASSO-selected controls, the pooled coefficient is a
convex combination of those for adults and children. Patterns of signs and magnitudes are qualitatively
unchanged, though precision is predictably reduced.

57The marginal effects are .86 + 1.07 − .10 − 2.40 = −.57 for children and −.41 + 1.53 + 1.17 − 2.16 = .13
for adults.

58More generally, the welfare effects of the changes in Table 2 depend on exposure changes, the shape of
the air pollution damage function at high levels of exposure, and subjects’ valuation of time use changes.
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Finally, our theoretical model delivers two predictions related to willingness to pay for
continued receipt of our SMS pollution forecasts. The first is that willingness to pay will
be higher among subjects who have received the (free) SMS forecast treatment. The cor-
responding regression estimate (Table A6, column two) is positive 5.3 PKR and large in
proportional terms, consistent with Hypothesis 4, however, it is not statistically significant
(two-tailed p = .14). The estimated interaction effect of the forecast and training inter-
ventions is negative. This negative sign implies substitutability of training (human capital)
and information in subjects’ forecast production functions. We caution, however, that this
estimate is imprecise and the associated 95 percent confidence interval includes practically
meaningful values on both sides of zero.

5.3 Demand for air pollution forecasts

Our final primary hypothesis pertains to demand for 90 additional days of our SMS air
pollution forecasts. As pre-specified, our analysis focuses on subjects exposed only to the
forecast treatment. Forecasts are plausibly an experience good, and these subjects’ demand
reflects months of interaction and learning. This informed demand constitutes the relevant
estimand for a policymaker contemplating distribution of government forecasts and con-
ducting a benefit-cost analysis. Figure 2 Panel A presents a histogram of willingness to pay
(WTP) for this group. There is evidence of round-number heaping, particularly at multiples
of 10 and 50. Vertical lines indicate the mean at 93.22 PKR and the median at 100 PKR.
Roughly two percent of respondents in this group bid the maximum of 200 PKR and their
willingness to pay is potentially censored. This implies that true mean willingness to pay is
weakly greater than our reported value.59 In a right-tailed test against a zero null hypothesis
p = .000 (see Table A6). This is consistent with Hypothesis 1 from the model in Section
2, that willingness to pay for useful forecasts is non-zero. On a monthly basis, mean WTP
of 93 PKR represents roughly 41 percent of total mobile phone costs in Lahore.60 Consid-
ering a different benchmark, 93 PKR is approximately 20 percent of a day’s earnings for
an unskilled labourer. Section 5.7 aggregates WTP over Lahore and compares the resulting
figure to monitoring costs. Under the assumption that our forecasts provide no direct utility
(as in the theoretical model of Section 2),61 mean WTP can be interpreted as the expected
welfare gain from additional avoidance facilitated by the information. To the extent that

59Similarly, if some subjects expected to receive forecasts free from others after endline, that would have
reduced their observed WTP, and again our estimated mean WTP is a lower bound.

60Table 22 of Pakistan Bureau of Statistics [2017] gives monthly per capita communications expenditure
in the third quintile at 75.62 PKR. Dividing our WTP estimate by three gives a monthly WTP of 31.07
PKR. As a proportion of communications expenditure this is 41 percent.

61By “no direct utility” we mean that subjects do not derive satisfaction from the forecast itself, even
without acting on it.
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avoidance behaviour is constrained, e.g. by conditions of employment, forecast demand will
be constrained as well. If expectations remain biased, forecast demand will not reflect all
available welfare gains from avoidance. Figure 2 Panel B presents the same underlying WTP
responses as a demand curve. The average elasticity of quantity demanded—expressed here
as the share of subjects purchasing—with respect to price is -.93.

In our low-income subject population, finding an appreciably positive mean willingness
to pay was by no means obvious ex ante. Barnwal et al. [2017] discovered low and elastic
demand for arsenic testing of wells in Bihar, India. More broadly, a large body of work in
development economics has revealed both low and strongly elastic demand for preventative
health care [Kremer and Glennerster, 2011]. This suggests that demand for health inform-
ation (or information complementary to health care) may share features with demand for
other preventative measures, like insecticide-treated nets and water treatment.

The relatively high willingness to pay for air pollution forecasts may stem from several
factors. First, because we delivered the forecasts by text message, subjects did not face the
takeup barriers in time, distance, and inconvenience identified by studies like Thornton [2008]
and Kremer et al. [2011]. Second, many previous studies have not used BDM elicitation.
Finally, differences in setting may be important. Studies like Kremer et al. [2011] have
examined rural populations, while ours is urban. Air pollution is a salient issue in Lahore
because of its severity. While our results may not transfer to settings like Accra or Santiago—
which experience substantially better air quality—they potentially shed light on cities with
air pollution similar to Lahore’s (for example, New Delhi and N’Djamena) and on past
periods of acute fine particulate pollution in cities like Beijing. Section 5.7 discusses the
external validity of our forecast demand estimates in greater depth.

5.4 Primary outcomes, effect of treatment on the treated

Table 3 reports estimated effects of treatment on the treated, instrumenting for take-up
with treatment assignment as described in Section 4.2. First-stage F statistics are far above
relevant critical values. Pre-specified LASSO control selection and other details are just
as in Table 1. Some 98 percent of subjects assigned to training took up training, so TOT
effects are not meaningfully different from their ITT counterparts.62 Subjects receiving
text messages viewed them slightly less than half the time, so TOT estimates are roughly
twice as large as their ITT counterparts. As a result, the relative magnitudes of effects
from the two treatments are reversed. Among perfect compliers, text messages reduced

62The TOT effects of training in columns 1-3 of Table 3 are slightly smaller in magnitude than the
corresponding ITT effects in Table 1 because the double-selection LASSO algorithm chooses a different set
of controls.
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air pollution forecast error by more, and increased willingness to pay for masks by more,
than did forecasting training.63 Perfect compliers in the text message group increased their
willingness to pay for masks by approximately 14 percent of the control-group mean.64

Of interest in Table 3 is the fact that the combined treatment effect of forecasts and train-
ing on willingness-to-pay for masks is near-zero. Adding coefficients, for those who received
both treatments, the total effect is 14.9 + 3.92 − 18.4 = .42. One possible explanation is that
receiving both treatments creates a greater ability to avoid air pollution inter-temporally
and thus lowers demand for other avoidance goods (i.e. wearing masks and staying indoors
could be substitutes). Table A9 provides evidence consistent with this explanation. When
we subset our analysis to those respondents who report an at-or-above-median preference
for masks at baseline,65 we see a stronger effect of SMS forecast take-up on WTP for masks
and no correspondingly large negative coefficient on the interaction with training take-up.
The combined treatment effect for this group is 20.3 + 3.23 − 13.6 = 9.93. While such ex-
post analysis should be interpreted cautiously, it suggests that respondents who particularly
dislike masks may substitute to other avoidance behaviour, while those who prefer masks
exhibit more consistent demand.

5.5 Mechanisms

5.5.1 Sources of reduced air pollution forecast error

Figure 1 investigates how our interventions reduced error in one-day-ahead forecasts. For the
control group and each treated group, a separate probability density function is estimated
over t + 1 forecast error. Unlike in most of this paper’s exhibits, in Figure 1 errors are
denominated in µg/m3 rather than control-group standard deviations; no absolute value
operator is applied. At endline control subjects under-predicted pollution substantially,
by 40.2 µg/m3 on average. If subjects face convex pollution-damage and abatement-cost
functions, as hypothesized in our theoretical model, then such underprediction is more costly
than overprediction of similar magnitude. As endline surveys took place during a high-
pollution season (January-February), these prediction errors are plausibly consequential for
health and well-being.66 In contrast, the distributions for the treated groups are shifted

63We cannot reject a null hypothesis that the TOT effects are equal in any column.
64By “perfect compliers” we mean subjects who viewed 100 percent of the SMS forecasts they received.
65Mask preference is an average of five dummy variables: the respondent has seen people wearing N95

masks before, the respondent believes N95 masks work, the respondent does not believe N95 masks are
ugly, the respondent believes the masks are comfortable (after trying one on), the respondent knows of a
convenient place to purchase N95 masks. The median is three of five dummies equal to one.

66At baseline average t + 1 forecast error was positive: subjects over-predicted pollution. This may have
been because baseline surveys occurred during a relatively low-pollution season (April-May). Figure A3
illustrates the distribution of baseline t + 1 forecast errors.
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rightward, indicating reduced underprediction. Dispersion is also reduced. Tables A10 and
A11 quantify these differences in means and standard deviations, respectively. Treatment
increased means (reduced underprediction) by 1.3 to 6.3 µg/m3, with the largest change in
the SMS-forecast group.67 Treatment also reduced the standard deviation of errors by 2.7
to 14.3 µg/m3, with the largest change in the training group.68 This is apparent in Figure
1, where the height of the distribution function at the mode is much greater for the training
group than for the others. Because our measures of forecast error (as in Table 1) are built
from absolute values, effects on those variables reflect both the reduced underprediction and
the reduced dispersion in the underlying (non-absolute, non-standardized) forecast errors.

Appendix Section B investigates two additional possible sources of reduced air pollution
forecast error specific to those who received our training intervention: information seeking
and processing (Section B.1) and additional training effects (Section B.2). We find suggest-
ive evidence that trained subjects make better use of relevant (i.e. weather) information
when forecasting. Trained subjects better internalize mean reversion after experiencing an
outlier day for air pollution, and they better adjust forecasts for predictable day-of-the-week
pollution effects than untrained subjects, both concepts taught during the training. At the
same time, trained subjects are no better than the untrained at adjusting forecasts when
rain is on the horizon (untrained subjects are already good at this) and they round their
forecasts no less (one of the training modules stressed not rounding forecasts).

5.5.2 Analysis from the midline training intervention

If the training intervention genuinely improved forecasting ability, that should have been
apparent not only at endline, but also immediately after completion of the training. Subjects
made incentivized one-day-ahead air pollution forecasts at the beginning of the training
session and again at the end, yielding two observations for each of 522 subjects who completed
training. Recall that subjects received training in both the training-only and forecasts-plus-
training groups. This allows us to estimate simple difference-in-differences models of forecast
errors at t + 1 and t + 3 (Table 4).69

The effect of SMS forecast receipt on forecast error at t + 1 (row one, column one)
is negative. At the start of the training session, subjects who had been receiving SMS
forecasts made better one-day-ahead forecasts than subjects who had not been. Because

67These estimates are not statistically significant at conventional thresholds.
68The reduction in standard deviation for the training group is statistically significant (p = .03), but

reductions for the other groups are not statistically significant at conventional thresholds.
69The estimating equation is Yit = β1Forecastsi +β2Postt +β3Forecastsi ∗Postt +X

′

iδ+εit, with i indexing
subject and t period (beginning or end of the training session). As elsewhere in the paper, baseline controls
in X were chosen using post-double-selection LASSO.
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both treatments were randomized and the forecast-only subjects had not yet been treated
at the start of the training session, this estimate can sustain a causal interpretation. The
negative effect is consistent with subjects learning about air pollution (or more formally, the
data-generating process) through exposure to SMS forecasts. The effects of SMS forecasts on
t+3 forecast error (column 2) are imprecise and one can reject neither a zero null hypothesis,
nor a null hypothesis of equality with the estimate for t + 1.

At the end of the one-hour training, forecast errors fell in the training-only group–the
“Post training” coefficient is the marginal effect on this group. Point estimates are negative
in both columns, and statistically significant in column one. This is consistent with the
training functioning as intended. In the forecasts-and-training group, though, there was
little change from the beginning of training to the end. Summing the coefficients in the
second and third rows gives the marginal effect of the “Post” variable on this group. These
sums are quite close to zero, and one cannot reject a zero null hypothesis at any conventional
threshold. As the “Post” variable was not randomly assigned, speaking strictly one cannot
interpret these marginal effects as causal effects of training. The scope for confounding in
the course of a one-hour training was quite limited, however, and subjects had little ability
to influence the timing of the training sessions.

Broadly, subjects who had been receiving SMS forecasts started the training session per-
forming better than those who had not. But over the course of the session, the other subjects
caught up in terms of forecast error. One could interpret this as evidence of a ceiling on
forecast accuracy, operating perhaps through memory or cognition. Viewed through the lens
of the model in Section 2, Table 4 provides corroborating evidence that information and hu-
man capital are substitutes in subjects’ forecast production functions. Some of these trained
subjects attrited between training and endline. Table A12 presents the same analysis for
the endline sample and results are strongly similar. Table A13 presents a complementary
analysis in which we examine heterogeneity in our primary intent-to-treat effects on fore-
cast error by baseline forecast error. While there is little evidence of heterogeneity for the
forecasts-only and both-treatments groups, there is suggestive evidence that our lessons were
less successful for training-only subjects with lower baseline errors (p-value 0.11).

5.5.3 Mask demand

To investigate the positive treatment effect of SMS forecasts on WTP for masks, Figure
A4 presents demand curves by experimental group. From these curves one can see that
the increase in mean WTP for the forecast group is driven primarily by increases in takeup
at higher prices (100-200 PKR). Demand elasticity in the control group is -1.6. Demand
is less responsive to price in the three treated groups, with elasticities ranging from -.9 to
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-1.2. Note however that the local elasticities near the retail price—135 PKR at the time of
our study—are greater at roughly -2.4 (Table A16). This implies that small price changes
or subsidies could produce large changes in mask takeup. At the time of our study mask
wearing was uncommon in Lahore, with 74 percent of subjects reporting at baseline that
they had never seen other people wearing N95 masks. If social norms around mask wearing
changed in response to Covid-19, demand curves could have changed as a consequence.

5.6 Robustness

5.6.1 Experimenter demand

One might worry that some subject responses, especially non-incentivized measures of air
pollution avoidance, might have been influenced by perceived experimenter demand. That
is, subjects might have said they took action to avoid air pollution, when in fact they
did not, if they believed we hoped to increase avoidance. This tendency could have been
exacerbated if subjects thought future interactions and payouts could depend on responses.
We attempted to mitigate these effects in several ways. First, all of our enumerators were
trained to distance themselves from the implementation of treatments and to act as unbiased
observers, with no promises of future interactions. We also ensured endline enumerators were
not those that were involved in inviting subjects to treatment or providing them forecast
training. Second, we phrased questions to mitigate experimenter demand effects and relied
heavily on incentive-compatible elicitations for our primary analyses. Third, we included
a social desirability module in our endline survey, as in Crowne and Marlowe [1960] and
recent studies such as Dhar et al. [2018]. From this module, we construct an index of social
desirability and report treatment effects on this variable in Table A21. Point estimates are
small and not statistically significant. Marginal effects on all three experimental groups are
negative, suggesting that if anything our treatment reduced the propensity to give socially
desirable survey responses.

In addition, we indirectly evaluate experimenter demand effects on willingness to pay for
our SMS air pollution forecasts. First we evaluate heterogeneity in willingness to pay for
SMS forecasts by subjects’ baseline forecast error. If willingness to pay were driven largely
by experimenter demand, we would expect no difference in willingness to pay across subjects
with above- and below-median errors. If instead willingness to pay was driven by the value of
information to subjects, then we would expect subjects with higher baseline error to exhibit
greater demand. Figure A5 displays the latter pattern: a third-party forecast is more valuable
to someone who cannot forecast well alone. While baseline error could be correlated with
other subject characteristics, the observed demand heterogeneity is inconsistent with pure
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experimenter demand.70 Second, note that willingness to pay in the control group was still
considerable at 89 PKR (Table A6, column one; cf. 93 PKR in the forecast-only treatment
group).

5.6.2 Spillovers

Given the ease of relaying our forecasts, spillovers might in principle be a concern for our
text message forecast treatment. Our sampling was designed to mitigate these concerns by
separating subjects in space (sampled households were at least five houses apart), but some
social networks might have included both treatment and control subjects nonetheless. We
also asked subjects not to share pollution forecasts outside their households.

We sought to measure those spillovers we could not eliminate. At endline, subjects in
the control group were asked if they received our forecasts from someone else. Just 31 of
544 subjects (5.7 percent) outside the text message group reported receiving any of our
pollution forecasts. Of these 31 subjects, 22 reported receiving one to nine of our messages,
and just nine reported receiving ten or more; Table A.22 reports the complete set of spillover
frequencies. This evidence on spillovers does not raise substantial bias concerns. In addition,
we account for measured spillovers as a form of control non-compliance in our treatment-on-
the-treated estimates in Section 5.4. Because spillovers were so infrequent, accounting for
them produces minimal changes in our estimates.

5.7 External validity of demand for air pollution forecasts

How far does our estimated demand curve for air pollution forecasts generalize? A complete
reply to this question would require similar experiments in other settings, but theory and
descriptive evidence allow for thinking about external validity in a structured way. The
value of new air pollution information plausibly depends on: 1) air pollution levels; 2) the
information environment (sources and modes of dissemination); and 3) scope for, and welfare
gains from, avoidance. For this discussion of external validity we will hold air pollution fixed
at high levels. Highly polluted cities like Lahore attract both research and policy attention
because the returns to new knowledge are arguably highest there.

In Appendix C we compare Lahore, which had the world’s highest levels of fine particulate
pollution in 2022, to the other 24 of the 25 most polluted cities on dimensions 2) and
3).71 In this section, we predict WTP in Lahore using commonly available demographics.

70As an important aside, this heterogeneity is also inconsistent with subjects valuing SMS forecasts for
reasons other than their information content, e.g. because the messages help subjects remain attentive to
pollution.

71According to IQAir, the 25 cities with the highest levels of PM2.5 (fine particulates) are: Lahore,
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Aggregating across the city, we calculate total WTP of roughly 3.6 billion PKR, or US$12.7
million. We then project WTP for the highly polluted comparison cities. The resulting means
range from 70PKR to 107PKR (Table A26). Underlying household-level estimates have large
standard deviations (12.3 to 28 PKR) suggesting that demand varies substantially within
cities. These estimates should be interpreted cautiously, as large benefit transfer errors are
possible: Kaul et al. [2013] document mean transfer error of 39 percent.

In summary, we find that our experimental setting in Lahore is reasonably similar to
most of the world’s highly polluted cities in its information environment and its history.
Adjusting for population differences moves estimated willingness to pay only modestly. As
a result, our estimates are useful inputs to research and benefit-cost analysis of new air
pollution monitoring in the urban settings where those efforts matter most. In cities for
which we calculate WTP, the resulting estimate is at least one order of magnitude larger
than monitoring cost, and possibly two [Hussey et al., 2022]. Even a large benefit-transfer
error would be unlikely to reverse the sign of a conventional benefit-cost analysis under
these circumstances. In cities with relatively richer information environments, e.g. New
Delhi with its 10 monitors [Central Pollution Control Board, 2022], our estimates are less
relevant to expansion of the monitoring network, but they nonetheless speak to the value
of the monitoring already in place. This may be important to governments considering the
continuation of monitoring in the context of competing policy initiatives.

6 Conclusion

We show that increasing information and human-capital inputs allows developing-country
urbanites to form more accurate expectations over an environmental threat: air pollution.
Most strikingly, our one-hour forecast training reduced forecast error for incentivized pre-
dictions made up to six months later. This is consistent with the training building human
capital that works against common prediction biases. Exercises of this type could be a use-
ful complement to education and job training in the developing world. While our training
was relatively expensive to administer, other work has demonstrated successful de-biasing
from videos and video games, which scale much more cheaply [Morewedge et al., 2015]. The
constituent lessons and exercises from our training could be delivered via such low-cost chan-
nels. More generally, our training results argue that assisting people in using information
they already have is at least as important as delivering novel information [Hanna et al.,
2014].

Hotan, Bhiwadi, Delhi (NCT), Peshawar, Dharbanga, Asopur, N’Djamena, New Delhi, Patna, Ghaziabad,
Dharuhera, Baghdad, Chapra, Muzaffarnagar, Faisalabad, Greater Noida, Bahadurgarh, Faridabad, Muzaf-
farpur, Noida, Jind, Karagandy, Charkhi Dadri, and Rohtak [IQAir, 2023].
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Exposure to information—pollution forecasts—also increased willingness to pay for pro-
tective masks. This suggests that in areas where mask-wearing is not yet commonplace,
information provision could be an important spur to mask adoption and other adaptive be-
haviours. Our findings that mean WTP for masks is roughly 70 percent of the retail price
and demand is locally elastic suggest that modest subsidies could produce large changes in
takeup, with concomitant health benefits.

In addition, we present evidence of meaningful willingness to pay for air pollution fore-
casts among developing-country urbanites. This argues that the scarcity of environmental
information in many developing countries does not stem from a lack of demand. While cap-
ital and operating costs for reference-quality air pollution monitors are considerable—the
equipment for a single site typically costs more than US$20,000 [Hussey et al., 2022]—the
level of demand we estimate indicates that the welfare gain from investments in air pollution
monitoring and forecasting are likely an order of magnitude greater than the costs. This is
plausibly true not only in Lahore, but also in other developing-country settings with high
pollution, low information, and comparable or higher incomes.

Many developing cities combine high, variable air pollution with relatively sparse in-
formation and low stocks of human capital. Residents face considerable risk, not only from
environmental threats, but also in domains from family to employment. While our experi-
ment was not designed to measure the broad welfare effects of providing forecasts or training
agents to produce more accurate expectations, they are plausibly considerable, and warrant
future research.
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7 Figures

Figure 1: Air pollution forecast errors, t+1
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Note: Both treatments reduced mean under-prediction in air pollution forecasts. In addition, both treatments reduced the

variance of forecast errors across subjects. Errors are the difference between subjects’ incentive-compatible one-day-ahead

(t+1) air pollution forecast and realised pollution on the day after the endline survey. That is, a negative error represents an

underprediction of pollution. Units are µg/m3, rather than control-group standard deviations as in most exhibits in this paper.

Densities were estimated under Stata-default kernel and bandwidth.
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Figure 2: Willingness to pay (WTP) for air pollution forecasts, forecast-only group
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(a) Panel A: Histogram of willingness to pay
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(b) Panel B: Demand curve for air pollution forecasts
Note: End-line willingness to pay (WTP) for air pollution information, specifically 90 additional days of our SMS air pollution
forecasts (Section 3.1), was practically large. The vertical long-dashed line in Panel A marks the mean at 93.22 PKR, while the
vertical short-dashed line marks the median at 100 PKR. For a formal hypothesis test of the mean against a zero null, see Table
A6. In addition, Panel A illustrates the full distribution of WTP across subjects. Panel B expresses quantity demanded as the
share of subjects purchasing; that is, the share with WTP greater than or equal to a given price. WTP was elicited at endline
using a Becker-DeGroot-Marschak mechanism [Becker et al., 1964] with a maximum bid of 200 Pakistani Rupees (PKR). Both
panels reflect the forecast-only treatment group (246 subjects), as explained in Section 5.1, because forecasts are plausibly an
experience good.
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8 Tables

Table 1: Primary outcomes, intent to treat

Forecast
error (t+1)

Forecast
error (t+3)

Happiness
variance

WTP:
Masks

Avoidance
index

Forecasts -0.11 -0.022 0.052 6.58 0.046
(0.058) (0.056) (0.070) (3.53) (0.059)
[0.02] [0.35] [0.03] [0.22]
{0.05} {0.05} {0.17}

Training -0.15 -0.065 0.078 3.95 0.019
(0.053) (0.057) (0.071) (3.54) (0.059)
[0.00] [0.12] [0.86] [0.13] [0.37]
{0.01} {0.42} {0.12} {0.27}

Forecasts + Training 0.13 0.070 -0.11 -7.58 -0.022
(0.075) (0.081) (0.099) (5.02) (0.083)

Observations 999 999 951 999 999
Control mean 0.000 0.000 0.017 104.1 -0.0019
F = T p-value 0.44 0.44 0.71 0.47 0.65

Note: Both treatments reduced air pollution forecast error at t+1, and receipt of SMS forecasts increased willingness to pay

for masks. Coefficients are intent-to-treat effects, with the dependent variable indicated in the column heading. Units are

standard deviations for forecast errors, the variance of happiness, and the avoidance index. Units are Pakistani Rupees (PKR)

for willingness to pay for masks. All columns include randomization block indicators. A pre-specified LASSO procedure was

used to select additional controls separately for each outcome. Heteroskedasticity-robust standard errors are in parentheses.

A pre-specified left-, right-, or two-tailed test was conducted for each estimate of interest: air pollution forecast error (t+1

and t+3) (βF < 0, βT < 0), self-reported happiness variance (βT < 0), willingness to pay for masks (βF > 0, βT > 0), and

the avoidance index (βF > 0, βT > 0). The resulting p-values appear in square brackets. For pre-specified variables of

interest, Anderson [2008] sharpened q-values are reported in curly brackets. WTP for forecasts (not included in this table;

see Fig. 2) was also a pre-specified primary hypothesis. It was accounted for in the calculation of q-values and the q-value

for Forecast WTP is [0.001]. The F = T p-value corresponds to a t-test for equality of the coefficients on Forecasts and Training.
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Table 2: Outdoor time, effect of receiving forecasts

Outdoor hours
Forecasts 0.74 0.10 0.60 -0.41 0.60 0.86

(0.29) (0.56) (0.33) (0.61) (0.59) (1.66)
Forecasts * High pollution -0.88 1.22 -0.45 1.53 -1.08 1.07

(0.36) (0.99) (0.41) (0.97) (0.74) (2.88)
Forecasts * Cares about air quality 0.64 1.17 -0.10

(0.65) (0.69) (1.86)
Forecasts * High pollution * Cares -2.21 -2.16 -2.40

(1.05) (1.04) (3.05)
Observations 1442 1442 980 980 462 462
Control mean 4.74 4.74 4.18 4.18 5.96 5.96
Adult and/or child time? Both Both Adult Adult Child Child
F = F * HP p-val 0.0094 0.42 0.14 0.18 0.19 0.96
F * C = F * HP * C p-val 0.064 0.036 0.61

Note: Subjects treated with SMS forecasts better matched their outdoor time to air pollution levels, increasing it

on relatively cleaner days and decreasing it on relatively more polluted days. These effects were stronger among

subjects who reported caring about air quality at baseline. The initial estimating equation (odd columns) is

Yi = βF Forecastsi + βHHigh pollutiont + βF HForecastsiHigh pollutiont + γY0i + X
′
i δ + εi. The dependent variable is

outdoor time in hours, elicited as part of a 24-hour time diary. High pollutiont is a dummy for a high air pollution forecast

(fine particulate concentration above 150 µg/m3) on the day of the subject’s endline time diary (the day before the endline

survey). Even columns add triple interactions with a baseline indicator for caring about air quality; this indicator also enters

in non-interacted and double-interacted control terms. All columns include randomization block indicators. A pre-specified

LASSO procedure was used to select additional controls, which also included weather controls, week, and day-of-the-week

controls for the day of the time diary. Standard errors are clustered at the household level. The F = F * HP p-value corresponds

to a t-test for equality of the coefficients on Forecasts and Forecasts * High pollution. The F * C = F * HP * C p-value cor-

responds to a t-test for equality of the coefficients on Forecasts * Cares about air quality and Forecasts * High pollution * Cares.
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Table 3: Primary outcomes, effect of treatment on the treated

Forecast
error (t+1)

Forecast
error (t+3)

Happiness
variance WTP: Masks

Avoidance
index

% Forecasts seen -0.27 -0.028 0.060 14.9 0.093
(0.13) (0.13) (0.16) (8.04) (0.14)
[0.02] [0.41] [0.03] [0.25]

Attended training -0.15 -0.042 0.059 3.92 0.026
(0.056) (0.060) (0.074) (3.79) (0.062)
[0.00] [0.24] [0.79] [0.15] [0.34]

% For. x Att. train. 0.30 0.14 -0.22 -18.4 -0.056
(0.18) (0.20) (0.24) (12.2) (0.20)

Observations 999 999 951 999 999
Control mean -0.00 -0.00 0.017 104.1 -0.0019
1st stage F-stat 173.6 173.6 168.2 174.0 171.5
F = T p-value 0.30 0.90 1.00 0.12 0.57

Note: Takeup of training (.98) was higher than takeup (viewing) of SMS forecasts (.43). As a result estimated TOTs for SMS

forecasts are larger, relative to the ITTs, while estimated TOTs for training are similar to the ITTs. Coefficients are effects of

treatment on the treated, with the dependent variable indicated in the column heading. Units are standard deviations for the

forecast errors, the variance of happiness, and the avoidance index. Units are Pakistani Rupees (PKR) for willingness to pay

for masks. All columns include randomization block indicators. A pre-specified LASSO procedure was used to select additional

controls separately for each outcome. Heteroskedasticity-robust standard errors are in parentheses. A pre-specified left-, right-,

or two-tailed test was conducted for each estimate of interest: air pollution forecast error (t+1 and t+3) (βF < 0, βT < 0),

self-reported happiness variance (βT < 0), willingness to pay for masks (βF > 0, βT > 0), and the avoidance index (βF > 0,

βT > 0). The resulting p-values appear in square brackets. The F = T p-value corresponds to a t-test for equality of the

coefficients on % Forecast seen and Attended training.
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Table 4: Forecast errors, beginning and end of training

Forecast error (t + 1) Forecast error (t + 3)
Forecasts -0.13 0.027

(0.069) (0.074)
Post training -0.14 -0.051

(0.054) (0.046)
Forecasts * Post 0.17 0.024

(0.064) (0.065)
Observations 1044 1044
Control mean -0.20 -0.30

Note: Both the training-only group and the forecasts-plus-training group were offered training. At the start of the

training session, the forecasts-plus-training group produced smaller air pollution forecast errors (“Forecasts” coef-

ficients). But by the end of the session, the training-only group caught up (“Post training” coefficients). The

forecasts-plus-training group showed little change relative to the start of the session (summing coefficients on “Post”

and “Forecasts * Post”). The sample is comprised of two observations for each of 522 subjects. The estimating equation is

Yit = β1Forecastsi + β2P ostt + β3Forecastsi ∗ P ostt + X
′
i δ + εit, with i indexing subject and t period (beginning or end of

the training session). Units are standard deviations in all columns. All columns include randomization block indicators. A

pre-specified LASSO procedure was used to select additional controls separately for each outcome. Heteroskedasticity-robust

standard errors are in parentheses.
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